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Chapter 1

Problem

1. x denotes x coordinate of AGV position and y denotes y coordinate
of AGV position in a global reference frame.

2. p denotes (x, y, θ), v denotes speed, that is v =
√
ẋ2 + ẏ2 and a = v̇.

3. θ denotes heading vector, z(θ) denotes the corresponding unit length
complex number. α denotes vector (cos θ, sin θ). θe denotes head-
ing error with clockwise heading error being negative, and ω denotes
heading rate, that is, ω = θ̇.

4. δ denotes steering angle, and u = (δ, q) denotes control input, where
q is input for system v̇ = g(v, δ, q), which is called the dynamic model
of the AGV.

5. t denotes physical time, and t̄ denotes a dimensionless generic variable.
Without loss of generality, we assume that both of them only take
nonnegative values.

6. s denotes length variable of a curve, and κ(s) denotes signed cur-
vature of a curve at length s. We follow the convention that s in-
creases when an AGV along the path has a positive speed (moving
forwardly), and along the direction of increasing s, counter-clockwise
turning means κ(s) > 0 and clockwise turning means κ(s) < 0.

7. let L denotes the length of the main axis of the AGV, that is, L is
the distance between the center of rear wheel axis and the center of
frontal wheel axis.

Problem 1 (Path tracking). Given the controlled dynamic of the AGV as

ṗ = f(p, u) with respect to physical time t, a reference path p̃(t̄) with respect

to dimensionless variable t̄, and a reference speed ṽ(t̄), �nd a feedback control

law u = u(p) and a di�erentiable n(t) = t̄ such that solution to ṗ = f(p, u)
satis�es the following:

1. for any ε > 0 and t1 ≥ 0, there exists a δ(t1) > 0 such that ‖p(t1) −
p̃(n(t1))‖ < δ implies ‖p(t2)− p̃(n(t2))‖ < ε.

2. limt→∞ ‖p(t)− p̃(n(t))‖ = 0.
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3. limt→∞ |ṽ(n(t))− v(t)| = 0.

If the last requirement (requirement 3) of the above de�nition is excluded,
the problem turns into a trajectory tracking problem. If δ in requirement
1 is independent of t1, the system is called being uniformly (asymptotically)
stable. If the decay rate is bounded above by a exponentially diminishing
function, it is called being exponentially stable.

When the reference speed ṽ(t̃) is varying slowly, and the speed of the
AGV is controlled by an independent controller. We can assume that the
error between nominal speed and actual speed is always below a small
threshold. In this case, Path Tracking can be achieved with a trajec-

tory tracking controller with a good enough speed controller. This is the
approach we adopt in this project.
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Chapter 2

The Kinematic Bicycle Model

We start from a bicycle model with its main axis length being L. The actual
control needed to control the AGV is left out as an implementation detail
by de�ning a mapping from control input to the bicycle model to control
input to the actual model. In bicycle model, the contacting point of the
rear wheel with the ground is denoted by pr := (xr, yr), and that of the
frontal wheel is denoted by pf := (xf , yf ). We have

(ṗr · êy) cos(θ)− (ṗr · êx) sin(θ) = 0 (2.1)

This is called no-slippery condition of the rear wheel. Similarly, there is
no-slippery condition for the frontal wheel:

(ṗf · êy) cos(θ + δ)− (ṗf · êx) sin(θ + δ) = 0 (2.2)

where êx and êy are unit vector along x direction and unit vector along

y direction in the world coordinates. If we de�ne vr :=
ṗr·(pf−pr)

‖pf−pr‖
, we can

get the following equivalent form, notice that tan δ
L

= 1
Rr
, where Rr is the

turning radius of the rear wheel.
ẋr = vr cos θ

ẏr = vr sin θ

θ̇ = vr
L

tan δ

(2.3)

Similarly, we can get the kinetic constraints in terms of frontal wheel.
ẋf = vf cos (θ + δ)

ẏf = vf sin (θ + δ)

θ̇ =
vf
L

sin δ

(2.4)

Notice that with the frontal wheel sin δ
L

= 1
Rf
, where Rf is the turning radius

of the frontal wheel. With both wheels, a positive radius (a positive δ) means
turning counter-clockwise with positive speed, or turning clockwise with a
negative speed. Two consequences from the above two sets of equations are:

vr
vf

= cos δ (2.5)

δ = arctan
Lω

vr
(2.6)
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Given a pre-speci�ed path, for any point p = (x, y, θ), we use p̃ = (x̃, ỹ, θ̃)
to denote the nearest point on the path with respect to p. Note that this
relationship is only well-de�ned if there is only one nearest point with a
given point. This assumption always holds if we assume that the AGV can
only slightly deviate from the pre-speci�ed path, and the path is smooth
enough.

2.1 Rear Wheel Controller

First, we de�ne the following symbols, where × between two vectors are
their cross product, that is, d× α = det ({d, α}).

α̃ := (cos θ̃, sin θ̃) (2.7)

d := p− p̃ (2.8)

e := d× α̃ = dx sin θ̃ − dy cos θ̃ (2.9)

Notice that if the AGV is on the right hand side of the path, e will be
positive, and if the AGV is on the left hand side of the path, e will be
negative, we de�ne the heading error θe of the AGV as

z(θe) =
z(θ)

z(θ̃)
(2.10)

Recall that n(t) is de�ned as a mapping from physical time t to a dimen-
sionless curve parameter t̄. It is clear that the mapping from any p to p̃
implicitly de�nes such an n(t) too.

From the perspective of t, it is obvious that

vr cos θe = w|Rp| (2.11)

where Rp is the signed curvature radius at point p along the actual path,
and ω is the heading rate of the AGV at the same point. (To simplify
expression, we assume there is a virtual AGV with its state being given as
p̃.) From the perspective of t̄ = n(t), the �speed� of the virtual AGV with
respect to nominal time t̄ is ds

dt̄
. (Recall that s is the length variable of a

path.) This speed is proportional to the tangential speed of the AGV given
in equation 2.11. Notice that e is the latitude error of the AGV projected
to the normal direction of the path at point p̃. We have the following
relationship:

vr cos θe =
R̃p̃ + e

R̃p̃

ds

dt̄

dt̄

dt
(2.12)

= (1 + κ(t̄)e)
ds

dt̄
ṅ (2.13)

Notice that the nominal time variable t̄ can be chosen liberally, as long as
it can be used to parameterize the path. One way to select t̄ is to make it
the path length variable s, that is,

ds

dt̄
≡ 1 and t̄ = 0 implies s = 0
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In this case, equation 2.13 becomes

ṡ =
vr cos θe

1 + κ(s)e
(2.14)

The latitude error itself is determined by vr's projection onto the normal
direction of p̃, that is,

ė = −vr sin θe (2.15)

Recall that the heading rate of the AGV is ω. And the heading rate of the
virtual AGV is

ṡ

R̃p̃

=
κ(s)vr cos θe

1 + κ(s)e
(2.16)

Combining equation 2.14, equation 2.15 and equation 2.16, we have
ṡ = vr cos θe

1+κ(s)e

ė = −vr sin θe

θ̇e = ω − κ(s)vr cos θe
1+κ(s)e

(2.17)

This is a new kinematic model with new state vector p̄ = (s, e, θe) with
control input being ū = (vr, ω). When speed is controlled by another inde-
pendent controller, ω becomes the only control input.

A control law is given as below:

ω = ω0 + ω1 + ω2 (2.18)

where 
ω0 = κ(s)vr cos θe

1+κ(s)e

ω1 = −g(e, θe; t)θe

ω2 = kevr
sin θe
θe
e

(2.19)

where g = g(e, θe; t) > 0, ke > 0 and vr 6= 0. The controller given in
equation 2.18 leads to local asymptotic convergence. This can be veri�ed

by the Lyapunov function V (e, θe) = e2 + θ2e
k2
. Since curvature appears in

the control law, the path must be second order continuous. Because vr can
be positive or negative, this controller applies to both cases of AGV moving
forwardly and moving backwardly.

If we let
g = kθ|vr|, kθ > 0 (2.20)

This leads to local exponential convergence with its convergence rate inde-
pendent of vehicle speed. This is a property we want to have.

Recommended value for kθ and ke is kθ = 0.75 and ke = 0.25. Notice
that these values are not necessarily optimal. For details of this algorithm,
see [1].
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Chapter 3

Stanley Method for Cruise

Control

This method is used to perform cruise control. Given a moving vehicle and
a reference path, the state of its frontal wheel is denoted by

pf = (xf , yf , θf ),

where xf and yf are the coordinates of frontal wheel's center point, and θf is
its rolling direction. With a given path, there is also a unique reference path
for the frontal wheel. To avoid causing confusion, we call it the reference
frontal wheel path. Suppose that the nearest point on the reference frontal
wheel path with respect to the frontal wheel of the AGV is (x̃f , ỹf ), and a
virtual AGV is moving along the reference path with its frontal wheel being
of the following state

p̃f = (x̃f , ỹf , θ̃f ),

where θ̃f is the ideal rolling direction of the virtual AGV. We also introduce
the following de�nition:

α̃f := (cos θ̃f , sin θ̃f ) (3.1)

df := pf − p̃f (3.2)

ef := df × α̃f = dfx sin θ̃f − dfy cos θ̃f (3.3)

We de�ne the error between the rolling direction of the frontal wheel of the
AGV and the rolling direction of the frontal wheel of the virtual AGV as

θfe = θf − θ̃f .

Like what is done in the last section, the following relation holds

ėf = −vf sin (θfe)

= −vf sin (θf − θ̃f )
= −vf sin (θ + δ − θ̃ − δ̃)
= −vf sin (δ − (θ̃ + δ̃ − θ))
= −vf sin (δ − (θ̃f − θ))
= −vf sin (δ − ϕ),

6



where
ϕ = θ̃f − θ (3.4)

If we want the latitude error of the frontal wheel diminishes with a
constant rate, we need to solve the following equation with k > 0

ėf = −vf sin (δ − ϕ) = −kef (3.5)

We get

δ = arcsin (
kef
vf

) + ϕ

A drawback of this control law is that it is only legitimate when
kef
vf

< 1.

To overcome this, the control law can be relaxed to

δ = arctan (
kef
vf

) + ϕ (3.6)

This is a �rst order approximation of the original control law, with the cost
that now it only has local exponential convergence. Because this control law
does not depend on curvature of the path, it only requires that the path is
�rst order continuous.

The convergence of the control law can be veri�ed by substituting Equa-
tion 3.6 into Equation 3.5. By doing so, it leads to the following

ėf = −vf sin arctan
kef
vf

=
−kef√
1 +

k2e2f
v2f

because of sin (arctan β) = β
1+β2 . If

kef
vf

< c > 0, we have

|ėf | >
k√

1 + c2
|ef |

that is how fast the latitude error converges with k being positive (local
exponential convergence). It is obvious that with a �xed positive k, vf
must be greater than zero.

The term ϕ in the control law can be interpreted as the addition of the
real heading error, and a feed forward term to counterbalance curvature
variance in near future. The result is that this control law is less sensitive
to small control signal delay, and has less overshoot to discontinuity of
curvature of the path. The cost is worse tracking error compared with the
rear wheel controller in the last section.

Suggested control parameter can take the initial value of k = 0.5 with
vf ≤ 1m/s. If quicker response is desired, the value can be increased,
otherwise, the value can be decreased. The optimal value should be found
by experiment for a setting-up. The details of the controller can be found
in [2].
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